rm(list=ls())
setwd("~/Dissertation/TemporalVariationCoinfection/Data")
TempVar <- read.csv("TempVarData.csv",header=TRUE,sep=",",stringsAsFactors=FALSE)
source("~/Dissertation/Scripts/BurnhamFunctions.R")
library(plyr)
library(ggplot2)
library(dplyr)
library(lme4)
library(car)
library(gridExtra)
library(grid)
library(cowplot)
TempVar$NosemaBinary <- ifelse(TempVar$NosemaLoad == 0, 0, 1)
TempVar$VarroaBinary <- ifelse(TempVar$VarroaLoad == 0, 0, 1)
TempVar$BroodPatternScaled <- TempVar$BroodPattern * 0.1
TempVar$FOBnorm <- ((TempVar$FOB) - min(TempVar$FOB, na.rm = TRUE))/(max(TempVar$FOB, na.rm = TRUE)-min(TempVar$FOB, na.rm = TRUE))
DFmaker <- function(data = TempVar,
Var1 = "SamplingEvent",
Var2 = "DWVbinary",
repNum = 80,
name = "DWV"){
x <- cbind(select(data, Var1, Var2), rep(name, repNum))
names(x)[2] <- "variable"
names(x)[3] <- "variableName"
return(x)
}
DW <- DFmaker(name = "DWV", Var2 = "DWVbinary")
BQ <- DFmaker(name = "BQCV", Var2 = "BQCVbinary")
NO <- DFmaker(name = "Nosema", Var2 = "NosemaBinary")
VA <- DFmaker(name = "Varroa", Var2 = "VarroaBinary")
BP <- DFmaker(name = "Brood Pattern", Var2 = "BroodPatternScaled")
FB <- DFmaker(name = "Frames of Bees", Var2 = "FOBnorm")
TempDat <- rbind(DW, BQ, NO, VA, BP, FB)
Temporal <- ddply(TempDat, c("variableName", "SamplingEvent"), summarise,
n = length(variable),
mean = mean(variable, na.rm=TRUE),
sd = sd(variable, na.rm = TRUE),
se = sd / sqrt(n))
Brood <- Temporal[13:18,]
Path <- Temporal[1:12,]
p1 <- ggplot(data = Path,
aes(x = SamplingEvent,
y = mean,
color = variableName)
) + geom_point(size=4) + labs(x = NULL, y = "Prevalance") + coord_cartesian(ylim = c(0, 1), xlim = c(1,3)) + geom_errorbar(aes(ymin = mean - se, ymax = mean + se, width = 0.05)) + geom_line(size=1) + scale_fill_brewer(palette = "Paired") + theme_classic(base_size = 17) + theme(legend.position=c(.85, .24), panel.border = element_blank(), axis.line.x = element_line(colour = 'black', size=0.5, linetype='solid'), axis.line.y = element_line(colour = 'black', size=0.5, linetype='solid'), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.text.x=element_blank(), axis.title.y=element_text(margin=margin(0,20,0,0))) + labs(color="Pathogen:") + scale_x_continuous(breaks=c(1,2,3))
p2 <- ggplot( data = Brood,
aes(x = SamplingEvent,
y = mean,
group = variableName)
) + geom_point(size=4) + labs(x = "Sampling Event", y = "Rel. Intensity") + coord_cartesian(ylim = c(0, 1), xlim = c(1,3)) + geom_line(aes(linetype=variableName), size=1) + scale_fill_brewer(palette = "Paired") + theme_classic(base_size = 17) + theme(legend.position=c(.22, .87), panel.border = element_blank(), axis.line.x = element_line(colour = 'black', size=0.5, linetype='solid'), axis.line.y = element_line(colour = 'black', size=0.5, linetype='solid'), panel.grid.major = element_blank(), panel.grid.minor = element_blank()) + labs(linetype="Population:") + scale_x_continuous(breaks=c(1,2,3))
plot_grid(p1, p2, align = "v", nrow = 2, rel_heights = c(5/8, 3/8))
Full <- lmer(data = TempVar, formula = logBQCV ~ VarroaLoad * SamplingEvent + (1|labID) + (SamplingEvent|Yard), REML=F)
summary(Full)
Null <- lmer(data = TempVar, formula = logBQCV ~ SamplingEvent + (1|labID) + (SamplingEvent|Yard), REML=F)
anova(Full, Null, test="LRT")
Full1 <- lmer(data = TempVar, formula = logDWV ~ VarroaBinary * SamplingEvent + (1|labID) + (SamplingEvent|Yard), REML=F)
Null1 <- lmer(data = TempVar, formula = logDWV ~ 1 * SamplingEvent + (1|labID) + (SamplingEvent|Yard), REML=F)
anova(Full1, Null1, test="LRT")
Full1 <- glmer(data = TempVar, formula = DWVbinary ~ VarroaLoad * SamplingEvent + (1|labID) + (SamplingEvent|Yard), family = binomial(link = "logit"))
Null1 <- glmer(data = TempVar, formula = DWVbinary ~ 1 * SamplingEvent + (1|labID) + (SamplingEvent|Yard), family = binomial(link = "logit"))
anova(Full1, Null1, test="LRT")